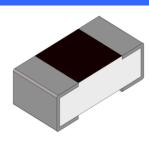


RLT0306-C Series Current Sensing Resistor (Lead / Halogen Free)

Reversion History :

Date	Revision	Changes	
2019/09/25	A4	New Approval Standard	

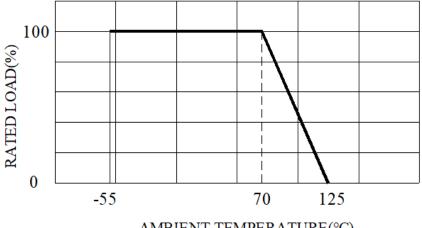

DOCUMENT : SRK1C-NH

RLT0306-C Series Current Sensing Resistor (Lead / Halogen Free)

Features / Applications :

- High power rating is up to 1/10W
- **RoHS compliant**
- Suitable for reflow soldering

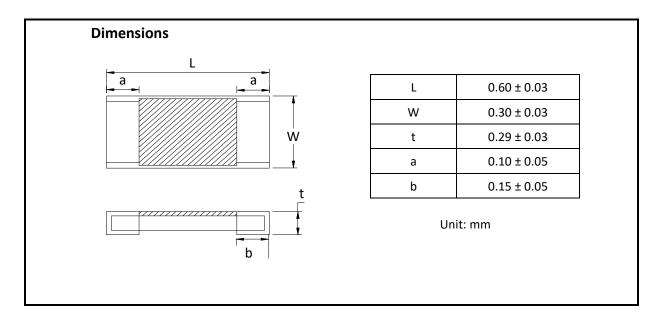
Electrical Specifications :


Characteristics	Feature		
Power Rating*	1/10 W		
Resistance Range	0.5 $\Omega{\sim}$ <1.0 Ω	1.0 $\Omega{\sim}$ 2.0 Ω	
Temperature Coefficient of Resistance(ppm/°C)	±300	±200	
Resistance Tolerance	±1%(F), ±2%(G), ±5%(J)		
Operation Temperature Range	-55℃ ~ +125℃		

*Note :

Power Rating is based on continuous full load operation at rated ambient temperature of 70° C.

For resistor operated at ambient temperature in excess of 70°C, the maximum load


shall be derated in accordance with the following curve.

AMBIENT TEMPERATURE(°C)

Outline Drawing :

Type Designation :

RLT0306	-	С-] - 🗆	NH
(1)		(2)	(3)	(4)	(5)

Note:

- (1) Series No.
- (2) Power Rating: C = 1/10W
- (3) Resistance value:

The "R" shall be used as a decimal point, For example -- R510 = 0.51\Omega; 1R00 = 1.0\Omega;

- (4) Tolerance (%): F=±1%, G=±2%, J=±5%
- (5) NH= Sn plating (Lead free / Halogen free)

DOCUMENT : SRK1C-NH

Characteristics :

Electrical

Item	Specification and Requirement	Test Method (JIS 5201)	
Temperature	As electrical specifications	Room temperature	
Coefficient of		Room temperature +100°C	
Resistance(ppm/°C)			
Short Time Overload	△R: ± 1.0%	2.5 x rated voltage for 5 seconds	
	Without damage by flashover, spark,		
	arcing, burning or breakdown		
Insulation Resistance	Over 100 M Ω on Overcoat layer face up	(1) Setup as figure 1	
	Over 1,000 M Ω on Substrate side face up	(2) Test voltage: 100VDC±15VDC	
		(3) Test time: 60 + 10 / - 0 seconds	
Voltage Proof	Resistance range: ± 1.0%	(1) Setup as figure 1	
	Without damage by flashover, spark,	(2) Test voltage: 100VAC(rms.)	
	arcing, burning or breakdown	(3) Test time: 60 + 10 / - 0 seconds	

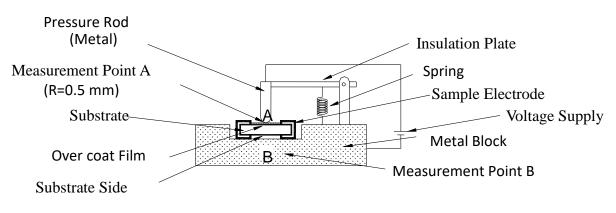
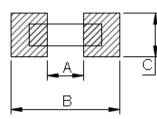


Figure 1 : Measurement Setup

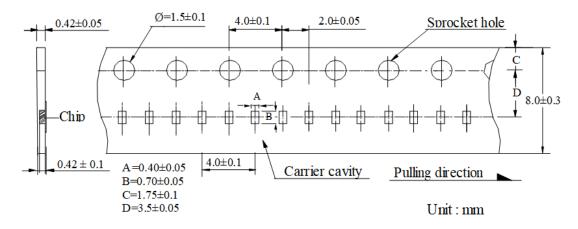
Mechanical


Item	Specification and Requirement	Test Method (JIS 5201)	
Solderability	The surface of terminal immersed shall be Solder bath:		
	minimum of 95% covered with a new After immersing in flux, dip in 245		
	coating of solder	molten solder bath for 2 ± 0.5 seconds	
Resistance to Solder	△R: ± 1.0%	(1) Pre-heat: 100~110°C for	
Heat	Without distinct deformation in	30 seconds	
	appearance	(2) Immersed at solder bath of	
		270 ± 5 $^\circ\!\mathrm{C}$ for 10 ± 1 seconds	
Bending Test	△R: ± 1.0%	Bending value: 3 mm for 30 ± 1 seconds	
	Without mechanical damage such as		
	break		

Endurance

Item	Specification and Requirement	Test Method (JIS 5201)	
Rapid Change of	△R: ± 1.0%	-55 ~125 $^\circ C$ 5 cycles, 15 min at each	
Temperature	Without distinct damage in appearance	extreme condition	
Moisture with Load	△R: ± 1.0%	$40 \pm 2^{\circ}C$ with relative humidity	
	Without distinct damage in	90% to 95%. D.C. rated voltage for	
	appearance	1.5 hours ON and 0.5 hours OFF.	
		Cycle repeated 1,000 hours	
Load Life	△R: ± 1.0%	Rated voltage for 1.5 hours followed	
	Without distinct damage in	by a pause 0.5 hour at 70 \pm 3 $^\circ\!\mathrm{C}$.	
	appearance	Cycle repeated 1000 hours	
Low Temperature	△R: ± 1.0%	Store temperature:-55 \pm 3°C for total	
Store	Without distinct damage in	1,000 hours	
	appearance		
High Temperature	△R: ± 1.0%	Store temperature: $125 \pm 2^{\circ}C$ for total	
Store	Without distinct damage in	1,000 hours	
	appearance		

Recommend Land Pattern Dimensions :

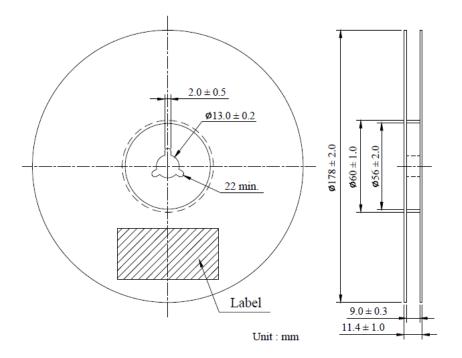


А	0.3	
В	1.0	
С	0.3~0.7	
Unit : mm		

Notice: We recommend there is no circuit design between pads to avoid circuit short.

Packaging :

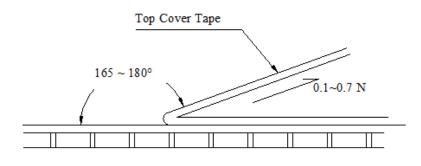
Tape packaging dimensions



Remark: Leader tape length≧30 cm(150 Hollow carrier cavity)

DOCUMENT : SRK1C-NH

Reel dimensions


Numbers of Taping : 10,000 pieces /reel

The following items shall be marked on the reel.

- (1) Type designation.
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name

Peel force of top cover tape

The peel speed shall be about 300 mm/min. The peel force of top cover tape shall be between 0.1 to 0.7 N.

Care Note :

Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35° C, humidity 45 to 85% RH) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen).

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.